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An energy-momentum tensor of electromagnetic fields associated with elementary 
classical point charges is constructed. This tensor represents finite amounts of 
energy-momentum and of corresponding fluxes. The differences between this 
tensor and the ordinary one, which is associated with continuously distributed 
charged matter, stem from the elementary nature of point charges. The new 
tensor is free of the 4/3 problem of the momentum of a point charge. Implications 
of the third-order Lorentz-Dirac equation are discussed. 

1. INTRODUCTION 

Classical electrodynamics of continuously distributed charged matter is 
a self-consistent theory. In this theory one can apply methods of differential 
calculus and derive expressions which are linear in an infinitesimal charge 
element dq. This procedure justifies ignoring all terms depending on higher 
powers of dq. Constituents of this version of classical electrodynamics are 
fields and continuous matter or matter particles whose charge is distributed 
continuously inside their volume. 

The discovery of the electron provided a reason for the introduction of 
elementary point charges into classical electrodynamics. Theoretical develop- 
ments support this attempt. Following the relativistic arguments of Landau 
and Lifshitz (1975) as well as the quantum mechanical ones of Rohrlich 
(1965), one is motivated to introduce elementary classical point charges into 
the theory. The elementary nature of a point charge means that an interac- 
tion between its charged constituents is unphysical. Several kinds of prob- 
lems follow the incorporation of these entities into classical electrodynamics. 
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Some problems are associated with their law of motion, namely, the third- 
order Lorentz-Dirac (LD) equation and the infinities of its runaway solu- 
tions (see, e.g., Dirac, 1938; Landau and Lifshitz, 1975; Rohrlich, 1965; and 
Pearle, 1982). Other problems emerge from the infinitely strong field at the 
neighborhood of a point charge. 

Recently, Comay (1990a,b) analyzed scattering processes of classical 
point charges and used mathematical arguments in a proof showing that 
runaway solutions do not pertain to the LD equation. Moreover, alternative 
second-order equations of motion of elementary point charges have been 
proved to be unphysical (Huschilt and Baylis, 1974; Comay, 1987a, 
1990c,d). These results support the acceptance of the LD equation as the 
law of motion of elementary classical point charges and encourage the hope 
that classical electrodynamics of elementary point charges can be put on a 
self-consistent basis. The main objective of the present work is to show that 
problems associated with the infinitely strong field at the vicinity of an 
elementary classical point charge can be settled. The analysis assumes that 
the LD equation is the law of motion of elementary classical point charges. 

In the following discussion a classical particle whose charge is distri- 
buted continuously inside its volume is called a C-charge. Charge elements of 
C-charges discussed here are held firmly at their relative place by mechanical 
forces, and particles can, for practical purposes, be considered rigid bodies. 
Elementary classical point charges are called P-charges. The principle stating 
that there is no meaning to interactions of a constituent of a P-charge with 
other constituents of the same P-charge is called the elementariness principle. 
This principle plays a crucial role in the discussion carried out here. 

Expressions are written in units where the speed of light takes the value 
c-- 1. Greek indices range from 0 to 3 and Latin ones run from 1 to 3. The 
metric g,v is diagonal and its entries are ( 1 , - 1 , - 1 , -  1). 7 = (1 -  v 2)- ~/2. 
Here F u v is the antisymmetric tensor of electromagnetic fields. The symbol 
.v denotes the partial differentiation with respect to x v and an upper dot 
denotes the differentiation with respect to the particle's invariant time r. 
The terms v ~ and a m designate 4-velocity and 4-acceleration of a particle, 
respectively. 

The work is organized as follows. Section 2 discusses energy-momentum 
tensors of systems of C-charges. Problems that follow the introduction of 
P-charges are pointed out in Section 3. Section 4 analyzes electromagnetic 
fields as sums of appropriate constituents. Section 5 discusses a system of P- 
charges for which a field energy-momentum tensor is constructed. This 
tensor represents finite amounts of energy-momentum and of corresponding 
fluxes and its associated 3-momentum is free of the 4/3 problem. Topics 
pertaining to the compatibility of the results are discussed in Section 6. 
Concluding remarks are the contents of the last section. 
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2. E N E R G Y - M O M E N T U M  TENSORS 

The symmetric energy-momentum tensor of an electromagnetic field 
associated with continuously distributed charged matter is a well-established 
quantity (Landau and Lifshitz, 1975) 

1 
r~f) = ~ ( F ~ ~ F~Vg,p + �88 F"~ F ~  g~V ) (1) 

The entries of (1) represent energy-momentum density and current, respec- 
tively. [For example, T oo= (E2+ B2)/8~ is the field's energy density.] In the 
case of continuously distributed charged matter, electromagnetic fields take 
regular values, entailing regular expressions for energy-momentum density 
and flux. Values of this kind make it possible to construct a self-consistent 
theory. In particular, Landau and Lifshitz (1975) show that one can write 
a Lagrangian of the system, derive Maxwell equations 

F ~ v,~ = _4rcJ~ (2) 

Fu v,z + F~z,u + Fz~,v = 0 (3) 

the Lorentz force 

maU = qF~ V vv = Jv Fu vJv d3r (4) 

and the following relation: 
/~v / Iv  __ (T(u) + T(m)),~-O (5) 

Here V is the volume of the charge whose acceleration is derived from the 
Lorentz force and the quantities in the intermediate expression of (4) are 
the appropriate mean values obtained from the integration over V. The term 

a p  
T(m) =]-llAatA[J/~ / is the matter energy-momentum tensor and p denotes the 
matter density. Relation (5) proves local conservation of energy-momentum. 
It shows that, at charge-free volume elements, the field energy-momentum 
is conserved, whereas at volume elements where charge density is nonzero, 
the sum of field and matter energy-momentum tensors is a conserved quan- 
tity. This discussion shows that classical electrodynamics of continuously 
distributed charged matter can be considered a closed regular theory, so far 
as energy-momentum conservation is concerned. 

3. PROBLEMS EMERGING FROM THE INTRODUCTION 
OF P-CHARGES 

P-charges are not the same entities as C-charges. In the case of the latter 
kind of particles, every infinitesimal charge element interacts with all other 
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charges, yielding the Lorentz force (4) which is linear in dq. On the other 
hand, the elementariness principle states that an interaction of a constituent 
of a P-charge with other parts of the same particle is inconsistent with the 
elementary nature of the particle. Hence, the satisfactory results obtained 
for the energy-momentum tensor of C-charges are not directly applicable to 
systems which consist of P-charges. This conclusion pertains to the fact that 
in the case of P-charges, one can consider neither finite charge densities nor 
an infinitesimal amount of charge interacting with all other charge quantities. 
The following problems emerge from the introduction of these new entities 
and are discussed in the present work: 

1. The elementariness principle excludes the interactions of one part of 
a P-charge with the rest of this particle and may affect energy-momentum 
balance. 

2. The strength of the electromagnetic field of a P-charge increases 
beyond all bounds as the distance between the particle and a point where 
the field is measured approaches zero. 

3. Continuously distributed charged matter satisfies the Lorentz force 
(4), whereas a P-charge obeys the LD equation 

2 2 .,..,u - -  . . ~ / . t  ~ L - ' J u  v 
~C 1 ~t - -  rrt~t - -  l t l "  ( e x t ) U  v -  sq:ta~ a~jv u (6) 

Unlike the second-order Lorentz force (4), which is written in terms of the 
entire field tensor, the LD equation is a third-order differential equation 
which depends on the particle's kinematic variables, on its own mass and 
charge, and on fields associated with external sources. The differences 
between the Lorentz force (4), which holds for C-charges, and the LD 
equation (6), which is the law of motion of P-charges, may induce changes 
in the definition of the field energy-momentum tensor. 

Each of these points indicates that the derivation of energy-momentum 
conservation (5) may require modifications. In the rest of this work it is 
shown that a self-consistent energy-momentum tensor of electromagnetic 
fields of P-charges can be established. This tensor represents finite amounts 
of energy-momentum and of corresponding fluxes. 

4, SPLIT OF ELECTROMAGNETIC FIELDS 

The linearity of classical electrodynamics enables the split of fields into 
sums of appropriate terms. Remembering that the system is made of P- 
charges, one finds that the overall field tensor can be written as a sum of 
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tensors, each of which is related to a distinct charge q~. The Lienard- 
Wiechert expression for the fields of q,. is 

U 1 - v 2 1 -] 
E = qs~(R~_~, v) 3 ( R -  Rv) + ( R -  R" ,)3 R x ( ( R -  Rv) x a )J  (7) 

B = R x E / R  (8) 

Here R denotes the radius vector from the retarded position of qi to the 
point where the fields are calculated and v and a are the retarded velocity 
and acceleration of q~, respectively. For obvious reasons, the first terms of 
(7) and of (8) are called velocity fields and the second ones are called 
acceleration fields. Henceforth, these fields are denoted by the symbols 

p v  ,uv  F(i,v ) and F(i,a), where the subscript i is the index of the charge with which 
this field tensor is associated and v and a denote velocity fields and accelera- 
tion fields, respectively. In cases where the subscripts v and a are omitted, 
the tensor represents the overall field associated with q~. If  all subscripts are 
suppressed, then the tensor F"  v is the tensor of the entire field. Using this 
notation, one can decompose the field tensor as follows: 

Fuv - • F ~  =- • F~,Y,) + E F~,~) (9) 
i i i 

The following property of fields is used in the analysis carried out in 
the present work. It is well known that a physically meaningful quantity 
must, directly or indirectly, be related to measurement. Classical electromag- 
netic fields are not directly measurable entities, namely, these fields cannot 
be measured by a device made of electromagnetic fields alone. On the other 
hand, these fields can be measured by classical charges which accelerate by 
virtue of their interaction with fields. It follows that classical electromagnetic 
fields become meaningful only in circumstances where their interactions with 
charges may take place. 

Measurability and the Maxwell equation (2) indicate the double role of 
charges with respect to fields. In the Maxwell equations a charge acts as a 
source of fields, whereas its equation of motion is used for measuring them. 
These two distinct roles of charges yield no problem if fields associated with 
one charge are measured by another charge. On the other hand, it is not 
clear what should be done in the case where one and the same charge 
takes the two roles. In other words, the problem is how to account for the 
interaction of a charge with itself. 

In order to examine this problem, let us consider a C-charge and follow 
the analysis of Landau and Lifshitz (1975) of interactions of charges with 
fields. Later, the results found for the motion of C-charges are used for P- 
charges. The motion of a P-charge is characterized if each point on its 
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trajectory is given as a function of time. An analogy between C-charges and 
P-charges can take place if a P-charge moves like the center of mass of a 
very small C-charge. The spatial size of C-charges used here is much smaller 
than the minimal distance between any two particles. Therefore, fields of 
external charges are practically uniform over the volume of each C-charge. 
Moreover, C-charges are considered stable and they are tested under condi- 
tions where effects of internal motion of their constituents (such as rotations 
or vibrations) can be ignored. Therefore, except at points that are very 
close to C-charges, fields take, for practical purposes, the same values as in 
corresponding systems of P-charges. Only this kind of system of C-charges 
is discussed below. 

In the following lines it is shown how the analysis of Landau and 
Lifshitz (1975) yields the motion of the center of mass of C-charges. Consider 
a specific charge qi and the following decomposition of fields: 

where 

F ~'~= F(ext) "" + F ~ '  (10) 

~v _ ~v (11) F(ext) = ~ FU) 
j~-i  

is the field tensor of all other charges except qi. 
In the analysis of the effect of (10) on the motion of the center of mass 

of qi, one starts from the Lorentz force (4) 

m d '  = F(ext)J, d3r + F(i) Jv d 3 r -  qiF(ext)V~ + F(i) Jv d3r (12) 

where the integration is carried out over the volume V, of q~. As stated 
above, u v F(ext) can  be considered uniform over V,. and the first integral is 
straightforward. In the following analysis F(~' is substituted by appropriate 
quantities, whereas u~ F(e• is left unchanged. For this purpose, the speed of 
light c is used explicitly. Expanding potentials in power series of e-1, it is 
proved that if field quantities related to powers of c- 3 and higher powers of 

- I  c are ignored, then one obtains the Darwin Lagrangian, which is written 
in terms of particles alone, 

l 2 1 __ 4 qjql 
L = 2 ~ rniv/+ ~ 5  .)-., m/v.i - 

j 75C j j > l  R/I 

qiq, ~ (vj �9 Rjt)(v, �9 R j,)) 
+ 2 ~ L V J  "v'-f (13) 

i>/ R~ 

This expression depends on instantaneous radius vectors ltj~ between coordi- 
nates of every pair of charge elements. This Lagrangian is invariant under 
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translation and is independent of the fields. Applying it only to charge 
elements located within V~, one finds that forces derived from (13) do not 
affect the motion of the particle's center of mass. 

The incorporation of c- 3 terms in the expansion shows that F{~; yields 
the q2-dependent terms of the LD equation (6). The analysis employs the 
Taylor expansion of p(r, t-R/c) and of J(r, t-R/c) in power series of 
R/c. Therefore, one finds that higher powers of the expansion can be ignored 
because the discussion is restricted to charges located within a C-charge, 
whose spatial dimensions are very small. Indeed, in this case, R is not greater 
than the particle's size, and terms containing c -~, where k > 3, are multiplied 
by R ~, where n is a positive integer. 

The foregoing discussion proves that the interaction of a very small C- 
charge with its own fields F~ '  can be replaced by the q2-dependent terms of 
the LD equation (6). Hence, if one uses the LD equation (6), then the 
interactions of this C-charge with its own fields are already taken into 
account by means of the terms proportional to q2. This is why the LD 
equation (6) (which is derived from the Lorentz force) is written in terms 
of external fields u F(em, unlike the Lorentz force (4), which depends on the 
entire field tensor F ~ ~. The correspondence between the motion of P-charges 
and that of C-charges whose spatial size is very small is used in the following 
sections. 

5. SPLIT OF THE ELECTROMAGNETIC 
ENERGY-MOMENTUM TENSOR 

Let us examine the energy-momentum tensor of fields of C-charges. 
Later, by means of the elementariness principle, a corresponding tensor of 
fields of P-charges is derived. The field energy-momentum tensor (1) is a 
quadratic function of F ~ v. It can be split into a sum of terms, each of 
which depends on particular field quantities. To this end, T" v is written as a 
function of two variables. Thus, for example, 

T,v~r,~p F(2))=- / r , , ~ , v ~  +l r -~ , r ,  _ ~  (14) * ~,*(1),  G k--(1)z(2)egafl  a *  (1)* (2)afl,g } 

Using the notation of (9) and (14). one can cast (1) into the following sum: 

= T (F,) .F~j))+y~ m ~ . ~ p  J t  k* (i,a), F(i,a)) 
i # j  i 

q - Z  "r"uvgl~'*rP ~rr 
I,*' (i,a), F(i ,v)) 

i i 

~ _ ~  rFpVl~Tr p 6T 
- ~--(~,~), F(i,~)) (15) 

i 
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An important property of the terms of (15) is their relation to incoming 
and outgoing fluxes of energy-momentum with respect to a small volume 
enclosing a C-charge qi. Consider a small sphere S having a radius r and 
whose center is at a retarded position of qi. The examination is carried out 
in an inertial frame where the C-charge is temporarily at rest at the retarded 
position. The radius r is much smaller than the distance between q; and any 
other charge qj. Hence, F(~y can be considered uniform inside S and the 
dominant part of the first term on the right-hand side of (15) behaves there 
like r -2. Similarly, since '~P F(i.,) behaves like r-~, one finds that the second 
term of (15) behaves like r -2, too. On the other hand, the other terms on 
the right-hand side of (15) behave like r - 3  and r - 4 ,  respectively. 

Except at the volume of qi, the sphere S is matter-free. Therefore, the 
field part of energy-momentum is conserved at points inside S which are 
outside q~. Hence, terms of (15) that behave like r -~ represent outgoing or 
incoming fluxes of energy-momentum. On the other hand, terms decaying 
like r -3 o r  r - 4  cannot represent such fluxes. It follows that the last three 
terms on the right-hand side of (15) must be associated with fluxes of energy- 
momentum exchanged between charge constituents of q~ (see, e.g., Teitel- 
boim et al., 1980). This discussion shows the physical meaning of each term 
of (15) in cases where it is associated with a system made of C-charges. 

Let us examine an analogous system where C-charges are replaced by 
P-charges. The charge and mass of each P-charge equal the corresponding 
quantities of the C-charge replaced by it. The same is true for the respective 
kinematic variables of the particles. These relations guarantee that mass and 
charge as well as initial conditions are the same in the two systems. 

Due to the elementariness principle, i t  is meaningless to consider an 
exchange of energy-momentum between constituents of a P-charge. The 
introduction of the LD equation (6) as the law of motion of P-charges is 
consistent with this principle because this equation does not depend on self- 
fields. Moreover, as shown in Section 4, the LD equation is a formula derived 
from the Lorentz force. This formula holds for systems where the spatial 
size of each C-charge is small enough. Therefore, due to the fit of self-mass, 
charge, and initial conditions, one finds that the motion of the center of 
mass of C-charges of the first system is the same as that of the corresponding 
P-charges of the second system. This outcome means that, in the LD equa- 
tion (6), self-interaction of P-charges is eliminated, whereas the outer world 
"sees" P-charges move like corresponding C-charges. 

An analogous step, where effects associated with self-interaction of P- 
charges are eliminated, should be taken in the case where the form of the 
corresponding field energy-momentum tensor is discussed. Indeed, due to 
the elementariness principle, a constituent of a P-charge cannot exchange 
energy-momentum with other parts of the same P-charge. Hence, portions 
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of the energy-momentum tensor representing this exchange, namely, the last 
three terms of (15), are physically meaningless. Therefore, in the case of P- 
charges, the field energy-momentum tensor is 

T~,V= ~ ,'r.v,'r,~r or . ruv~,~p o3 kl (i), F(j)) + ~  ~ t~ (i,a), F(i,,)) (16) 

It can easily be seen that the two-particle interaction part of (1) agrees 
with that of (16). The same is true for the intensity of the radiation part of 
these tensors. Moreover, (16) behaves like r -2 near every P-charge. It repre- 
sents finite amounts of energy-momentum fluxes exchanged between fields 
and P-charges and its energy-momentum density yields finite quantities. 
Therefore, it requires no further mathematical manipulations called renor- 
realization or cutoff procedures. The derivation of (16) is based on general 
principles, namely the elementariness principle and the measurability 
requirement. These principles state that one cannot measure the force exerted 
by a constituent of an elementary particle on other constituents of the same 
particle. Hence, there is no physical meaning to energy-momentum f l u x  

between such constituents, namely, to the current components T u~ of the 
last three terms of (15). Covariance requirements mean that the entire tensor 
associated with this flux should be deleted. This operation entails the removal 
of the infinities associated with energy-momentum densities T ~~ of the same 
tensor. 

The results of this section settle also another old problem of elementary 
classical point charges. This problem is known as the 4/3 factor of momen- 
tum obtained from a Lorentz transformation of fields of an elementary 
classical charge. Several articles discussing this topic have been published 
recently (Boyer, 1982, 1985; Rohrlich, 1982; Bialynicki-Birula, 1983; 
Campos and Jimenez, 1986; Comay, 1991). The problem emerges from a 
comparison of the transformed 4-momentum of the system with the momen- 
tum of the transformed fields. Considering the nonrelativistic limit of a 
Lorentz transformation of the field 4-momentum of a spherical charge, one 
finds that the corresponding 3-momentum is 4/3 times the required quantity. 
Bialynicki-Birula (1983) shows by means of an example that an incorpor- 
ation of the Poincar6 stress settles the problem. However, this approach is 
inapplicable to an elementary classical point charge because the elementari- 
ness principle is inconsistent with an additional internal mechanical stress. 

The energy-momentum tensor (16) is free of the 4/3 contradiction. 
In the case of a single inertially moving P-charge, the electromagnetic 4- 
momentum vanishes and its entire 4-momentum is ascribed to its mechanical 
part, namely p~ =mT(l,  vx, Vy, v~). Obviously, an application of a Lorentz 
transformation to such a particle yields results that are consistent with rela- 
tivistic requirements. 
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Using field decomposition, one can view (16) as follows. The first term 
of (16) is the interaction part of the field energy-momentum tensor (1) 

,uv  - -  , T l ~ V [  lg~: p 12~r.~ T(z)- Z (17) 1 I.~ (i) , ~ ( j ) ]  

i # j  

The radiation part of (17) together with the last term of (16) give the energy- 
momentum tensor of radiation fields 

T ( r a d )  - -  ~ c ~  - t~ ( e , a ) , F ( j , j  (18) 
i , j  

It follows that the interaction part of the radiation fields is contained in 
(17) as well as in (18). 

6. THE PROBLEM OF COMPATIBILITY OF RESULTS 

The problem of correspondence between the theory of P-charges and the 
well-known local energy-momentum conservation (5) of C-charges deserves 
attention. This issue is examined first at charge-free points of space-time. 
Later the problem of interaction of P-charges with fields is addressed. 

A comparison of the energy-momentum tensor (16) with (15) shows 
that (16) contains all terms of (15) except the last three. Following Teitel- 
boim e t  a l .  (1980), one finds that the deleted terms behave like r -3 and r -4, 
respectively and the 4-divergence of their sum vanishes outside the charge's 
world line. The same is true for the second term of (15). Since the 4-diverg- 
ence of the entire field tensor (15) vanishes there, one concludes that the 4- 
divergence of (16) vanishes at all charge-free points of space-time. This 
conclusion shows that (16) is consistent with energy-momentum conserva- 
tion at charge-free space-time points. 

Let us consider points of space-time on the world line of a P-charge ql. 
Here ri denotes the position of qi at t = 0, and S is a small sphere centered 
at ri. The sphere S contains no charge except q~. The 4-divergence of the 
interaction term (17) on the right-hand side of (16) is discussed first. Evi- 
dently, if a term of the summation does not depend on fields of q~, then, 
as shown above, the corresponding 4-divergence vanishes. Therefore, the 
required 4-divergence is 

p v  - -  , - i .Pv [  l~rrp Gr  T t 2 V d 1 2 ~ : p  Gr  T(1).v- - t - - ( i ) ,  F ( e x t ) ) , v  + t - - ( e x t ) ,  F ( i )  ) , v  (19) 

where (11) is substituted for the summation on j (j-r i). 
At points inside S, the Maxwell equation (2) yields for the fields used 

in (19) 

; v - ( 2 0 )  Ftext),v -- 0 
//V __ 

F(i) ,  v - - 4 l c q i  12~ 3(r - ri) (21 ) 
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Using these expressions together with the homogeneous Maxwell equation 
(3), one follows Landau and Lifshitz's (1975) calculation of the 4-divergence 
of the complete energy-momentum tensor of fields and obtains 

,uv __ u v  
T(r~,v - - q i F ( e x t ) V v ~ ( r -  ri) (22) 

This result balances the interaction of a P-charge with e x t e r n a l  fields, as used 
in the LD equation (6). 

The 4-divergence of the last term of (16) at the position of q,- is (Teitel- 
boim et  al.,  1980) 

T,uV ( F,~p,a) , ,,~ _ 2 2 a I.t F ( i , a l ) , v - - ~ q i ( a  a~)v  (23) 

This quantity compensates the last term of the LD equation (6). 
The foregoing results show that the LD equation (6) introduces an 

2~2A,u  additional term, gq ,  , which is inconsistent with local energy-momentum 
balance of the system (provided the definition of kinetic 4-momentum is not 
altered). The 0-component of this quantity is sometimes called the "Schott 
energy" of the "induction field energy" (Coleman, 1982). Coleman (1982) 
shows that the existence of this quantity is not incompatible with physical 
requirements in scattering processes where ql begins and ends with inertial 
motion as well as in cases of a periodic motion. These properties of the LD 
equation explain the successful tests carried out in the cases of the circular 
uniform motion of charges (Comay, 1987b) and in a scattering process 
(Huschilt and Baylis, 1976) where the asymptotic inertial motion is proved 
(Comay, 1990a,b). 

Relying on these results, one can follow Coleman (1982) as well as 
Teitelboim et  al. (1980) and arrive at a local conservation law by means of 
a redefinition of the particle's mechanical 4-momentum. Writing 

fi " = m v "u _ 2 q2a.  (24) 

one finds from (6), (22), and (23) that/3 'u can be considered part of a locally 
conserved formalism. 

However, the definition (24) of mechanical 4-momentum stems from 
an a d h o c  approach and its basis is not as solid as that of ordinary mechanical 
4-momentum. In particular, it is interesting to note that the unbalanced term 
of the LD equation (6), namely ]q26~ [with which the last term of (24) is 
associated], cannot be derived from a Lagrangian. In order to yield a third- 
order equation of motion of charged particles, their Lagrangian must take 
the form 

L=L(2" ,  5d ~, ,u A ~e,,t)) (25) 
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where 2 u = v ~ and 2 u = a u. Here x ~ is omitted from the Lagrangian's vari- 
ables because an explicit dependent on x ~ is inconsistent with space-time 
homogeneity. As shown by Jackson (1975), the analysis becomes simpler if 
a manifestly covariant treatment is carried out and the particle's invariant 
time z" is used as the independent variable. Let us take, for example, the 
term ma ~' of  (6) as an illustration of  this approach. This term can be obtained 
from a Lagrangian containing a function of  the following Lorentz scalar 
v~v~. Here all four components of  v u can be considered independent vari- 
ables and the constraints vUvu = 1 is introduced by means of  a Lagrangian 
multiplier (Barut, 1965). This example shows that the application of  r as 
the independent variable means that the Lagrangian can be written in a form 
where all terms are Lorentz scalars, a property which guarantees that the 
equations of  motion take the same form in all inertial frames. 

In (25), the contribution of  the potential to the equation of  motion is 
well known and is omitted here for the sake of brevity. The free-particle part 
of  the equation of  motion obtained from the Lagrangian (25) is given by 
Akhiezer (1962), 

d OL d 2 OL 
§ =0  (26) 

dr  0~ ~ dv 2 05~ ~ 

This Lagrangian depends on two scalar functions: 

__1 a (27) 5--3 0 Va, ;7=oaaa 

(Note that a variable of the form a~a,~ yields a fourth-order equation.) Using 
5, r/, and  a Lagrangian multiplier 2., one puts the free-particle part of the 
Lagrangian in the following form: 

L(5, 17) + ;t (v~v~ - 1) (28) 

The constraint 25 = ray,, = 1 yields 

d l  
= 1; . . . .  0 (29) 

dr  2 

This relation and its derivatives are used in the following calculation. 
Evidently, a variation of ~ yields (29). Substituting (28) into (26), one 
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finds 

d 63L(~ ", 7"/) d 2 c~L(~', I/) d 
- -  + (2Xv~) 

dr  av" dr  2 ~a ~ dr  

"L"  - " ' rlL" - a ~ f l L "  = - a ~ L ' c - v ~ q L ' ~ r  r a u L , - a u  0r 00 

+ G,L  'o + 2a,  o L  ~r + 2a,  f lL ~, + v, f/L ~r + v ,  i jL  ~, 

+ v~,rlaL ,~,r + 2vl, rlflL ,,, - .2-it, ...:, oor • v, 7/L, 0,0 - z a v  u - 2).a u 

= - a , L  ~ - 2,~vu - 22a u (30) 

Here partial derivatives of L are denoted by L}, etc., and 7/ is written in 
place of r Two terms + G L  ;7 cancel each other. Many other terms of the 
intermediate expression vanish by virtue of (29) and its derivatives. The final 
result consists of three terms and is independent of flu and of L ; .  It means 
that the scalar variable 7/= v~a~ does not affect the free-particle part of the 
equation of motion and can be eliminated from the Lagrangian (28). This 
outcome shows that the kinematic term ~q2dU of (6) cannot be derived from 
a Lagrangian depending only on the particle's 4-velocity and its derivatives. 

The discussion carried out in this section shows that local balance of 
energy-momentum is obtained from the energy-momentum tensor (16) at 
charge-free points of space-time. If  one does not alter the definition of kinetic 
4-momentum, then temporal nonconservation of energy-momentum 
emerges from the matter part of the theory where the third-order LD equa- 
tion holds. A feature like this is already known in conditions which are 
outside the domain of validity of classical physics, namely where quantum 
mechanics, with its inherent uncertainties, describes nature. Obviously, local 
nonconservation of energy-momentum cannot be used as an argument for 
rejecting the LD equation, provided the entire process conserves energy- 
momentum. This property of the LD equation has been proved recently for 
scattering processes (Comay, 1990a,b). 

7. C O N C L U D I N G  REMARKS 

The main objective of the present work is the derivation of the field 
energy-momentum tensor of a system of elementary classical point charges 
that represents finite amounts of energy-momentum fluxes. The derivation 
relies on two principles: the elementariness of point charges and the depend- 
ence of measurability of fields on charges. These principles lead to the energy- 
momentum tensor (16), which represents finite amounts of energy-momen- 
turn f luxes .  Similarly, an integration of the corresponding energy-momentum 
densities yields finite quantities because (16) behaves like r -2 near every 
point particle. The tensor (16) satisfies energy-momentum conservation at 
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charge-free points of space-time. Moreover, it contains the entire interaction 
part (17) of (15) as well as all of its radiation terms (18). 

The terms not included in the resultant tensor (16) represent energy- 
momentum currents exchanged between charge constituents of the same 
particle. This interaction is meaningful in the case of a particle whose charge 
is distributed continuously inside its volume. However, in the case of an 
elementary classical point charge, these quantities are unmeasurable, a prop- 
erty which shows that they are physically meaningless. This conclusion indi- 
cates that their removal from the final expression (16) should not cause a 
fundamental problem. These results are different from the ones obtained in 
other treatments, where the entire energy-momentum tensor (15) is kept and 
the ill effects of its unphysical parts are attempted to be removed by means 
of additional postulates. 

Another aspect of this problem is the 4/3 factor of momentum of 
transformed fields. In the case of an elementary classical point charge, one 
finds that the energy-momentum tensor (16) is free of this problem. 

The derivation of the energy-momentum tensor (16) is based upon 
general principles, namely the elementary nature of a classical point charge 
and the relation of physically meaningful quantities to measurements. The 
favorable results where infinite energy-momentum does not take place and 
the 4/3 problem is eliminated substantiate this approach. 

It is also shown that if the form of the kinetic 4-momentum is not 
altered, then the theory of elementary classical point charges cannot reach 
the status of the theory of continuously distributed charged matter, where 
local conservation of energy-momentum (5) is proved. Moreover, the formal 
redefinition of the 4-momentum (24) cannot be obtained from a variational 
principle. 
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